
CARTAN INVARIANTS

FOR THE RESTRICTED TORAL RANK TWO

CONTACT LIE ALGEBRA

Randall R. Holmes

Abstract. Restricted modules for the restricted toral rank two contact Lie algebra are considered.
Contragredients of the simple modules, Cartan invariants, and dimensions of the simple modules and
their projective covers are determined.

Let L be a finite dimensional restricted Lie algebra. All L-modules in this paper are assumed
to be left, restricted and finite dimensional over the defining field. Each simple L-module has a
projective cover; the multiplicities of the composition factors of the various projective covers are
called Cartan invariants.

Here, we use the method of [3] to compute the Cartan invariants for the restricted toral rank two
contact Lie algebra K(3, 1). To carry out the computation, one needs to know the simple modules
and their multiplicities as composition factors of certain induced modules. In [4]–which considered
restricted contact Lie algebras of arbitrary toral rank–it was shown that these multiplicities are
generically one, that is, the induced modules are, with a few exceptions, simple (see 1.1 below).
Although it is not known at the time of this writing, it is expected that (for arbitrary toral rank)
the few exceptional induced modules will not be simple. At least this is the case for the algebra
K(3, 1) as will be shown in this paper (see 6.1).

In addition to the Cartan invariants for K(3, 1) we will compute the dimensions of the simple
modules which will give in turn the dimensions of their projective covers. Also, we determine the
contragredient of each simple module.

I thank the referee for the improvement in 2.3(2) and its proof as well as for other useful
comments.

1. Statement of Main Results

Let F be an algebraically closed field of characteristic p > 2 and let n = 2r + 1 with r ∈ N.
For 1 ≤ k ≤ n let εk be the n-tuple with jth component δjk (Kronecker delta). Set A = {a =∑n

k=1 akεk | 0 ≤ ak < p} ⊂ Zn. For a, b ∈ A, define
(
a
b

)
:=

∏
k

(
ak

bk

)
. The factors on the right are

the usual binomial coefficients with the convention that
(

i
j

)
= 0 unless 0 ≤ j ≤ i. The vector space

A with F -basis {x(a) | a ∈ A} becomes an associative F -algebra by defining

x(a)x(b) =
(

a + b

a

)
x(a+b)
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(where x(c) = 0 if c /∈ A) and by extending this product linearly to A. A is called the divided power
algebra. It is a graded algebra with ith homogeneous component Ai defined to be the F -span of
{x(a) | |a|+ an = i} where |a| := ∑n

k=1 ak.
If n + 3 ≡ 0 (mod p) let K be the F -span of {x(a) | a 6= ∑

k(p− 1)εk} and otherwise let K = A.
Section 3 describes a way to give K the structure of a restricted Lie algebra. With this structure,
K (denoted K(3, 1) in [9]) is called the (toral rank r + 1) restricted contact Lie algebra. The toral
rank refers to the dimension of a maximal torus of K. Also, K has a restricted grading with ith
homogeneous component Ki defined to be the F -span of {x(a) | ‖a‖ = i} where ‖a‖ = |a|+ an − 2.
Note that Ki ⊆ Ai+2.

For 1 ≤ k ≤ 2r, set

σ(k) =
{

1 1 ≤ k ≤ r,

−1 r < k ≤ 2r,

and k′ = k + σ(k)r.
Let Λ = {λ =

∑r+1
i=1 λiεi |λi ∈ Fp} = (Fp)r+1 (viewing εi as an r +1-tuple). For a K0-module V

and λ ∈ Λ define Vλ = {v ∈ V |x(εi+εi′ )v = λiv (1 ≤ i ≤ r) and x(εn)v = λr+1v}. Any vector in Vλ

is said to have weight λ. A nonzero vector m ∈ Vλ is a maximal vector (of weight λ) if x(εi+εj)m = 0
for all (i, j) ∈ I := {(i, j) | 1 ≤ i, j ≤ r or 1 ≤ i ≤ r, i′ < j ≤ 2r}.

For each λ ∈ Λ there exists a simple (restricted) K0-module L0(λ) possessing a unique (up
to scalar multiple) maximal vector of weight λ. Moreover, {L0(λ) |λ ∈ Λ} is a complete set of
representatives for the isomorphism classes of simple K0-modules. In fact, K0 is the direct sum
of its p-ideals

∑
1≤i,j≤2r Fx(εi+εj) ∼= sp(2r) and Fx(εn) ∼= F and it is easy to see that L0(λ) is a

simple sp(2r)-module on which x(εn) acts as multiplication by λr+1, so classical theory applies.
If L is a restricted Lie algebra, its restricted universal enveloping algebra (u-algebra) is denoted

u(L).
Set N+ =

∑
i>0 Ki. Then N+ C N+ + K0 =: K+ and K+/N+ ∼= K0. In particular, any

K0-module becomes a K+-module in the natural way.
In [2] it was shown that for λ ∈ Λ, the K-module Z(λ) = u(K)⊗u(K+) L0(λ) possesses a unique

maximal submodule which is graded with respect to the natural grading of Z(λ) (cf. paragraph
before 3.3 below). The quotient L(λ) of Z(λ) by this maximal submodule is simple and graded with
homogeneous component of greatest degree K0-isomorphic to L0(λ). {L(λ) |λ ∈ Λ} is a complete
set of representatives for the isomorphism classes of simple K-modules. Moreover, denoting by
L(λ)[i] the ith suspension of L(λ) (so that L(λ)[i] is the graded K-module with jth homogeneous
component L(λ)i+j), {L(λ)[i] |λ ∈ Λ, i ∈ Z} is a complete set of representatives for the isomor-
phism classes of simple graded K-modules. Consequently, if V is a simple graded K-module with
homogeneous component of highest degree K0-isomorphic to L0(λ), then V ∼= L(λ) as K-modules.

For 1 ≤ k ≤ r + 1 set ζk = −∑r−k+1
i=1 εi (the empty sum being zero). A weight λ ∈ Λ is

exceptional if λ = ζk + (±k − r − 1)εr+1 for some k (1 ≤ k ≤ r + 1). The following theorem was
proved in [4].

1.1 Theorem. If λ ∈ Λ is not exceptional, then L(λ) ∼= Z(λ).

In order to state the main results of this paper, we assume n = 3 so that K is the toral
rank two restricted contact Lie algebra. Note that in this case, the exceptional weights are
(0, 0), (0,−4), (−1,−1) and (−1,−3).

In the following theorem V ∗ denotes the contragredient of the K-module V .

Theorem (see 5.3).
(1) If λ ∈ Λ is not exceptional, then L(λ)∗ ∼= L(λ1,−λ2 − 4).
(2) L(0, 0)∗ ∼= L(0, 0).
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(3) L(0,−4)∗ ∼= L(−1,−1).
(4) L(−1,−3)∗ ∼= L(−1,−3).

If λ = (λ1, λ2) ∈ Λ, then view λi ∈ Z with −p < λi ≤ 0 by identifying Fp with Z/pZ and using
the coset representative in the indicated range.

Theorem (see 5.5).
(1) If λ ∈ Λ is not exceptional, then dimF L(λ) = p3(1− λ1).
(2) dimF L(0, 0) = 1.
(3) dimF L(0,−4) = dimF L(−1,−1) = p3 − 1.
(4) dimF L(−1,−3) = p3 − 2.

Let P (λ) denote the projective cover of L(λ) and let Cλµ be the multiplicity of L(µ) as a
composition factor of P (λ). Cλµ is called a Cartan invariant and the matrix C = [Cλµ] is called
the Cartan matrix of K. (All indexing by Λ is assumed to be relative to a fixed ordering.)

Theorem (see 6.3 and 6.4). Assume p > 3. C = pβX tX where β = p3 − 12, X = [Xλ] is the
p2 × 1-matrix with

Xλ =





16 λ = (0, 0),
4 λ = (0,−4), (−1,−1) or (−1,−3),
1 λ1 = 1− p,

2 otherwise,

and tX denotes the transpose of X.

Theorem (see 6.5). Assume p > 3. For λ ∈ Λ, dimF P (λ) = pαXλ where α = p3 − 6 and Xλ is
as above.

2. Modules for the Witt algebra

Let n be arbitrary once again and for each k (1 ≤ k ≤ n) let Dk be the derivation of A given by
Dkx(a) = x(a−εk) with the convention that x(b) = 0 if b /∈ A. Then W =

∑
k ADk = DerF A is a

restricted Lie algebra called the Witt algebra. It has as F -basis {x(a)Dk | a ∈ A, 1 ≤ k ≤ n}. The
bracket product in W satisfies

[x(a)Dk, x(b)Dl] =
(

a + b− εk

a

)
x(a+b−εk)Dl −

(
a + b− εl

b

)
x(a+b−εl)Dk.

View W as an A-module in the natural way and set M = HomA(W,A). M is a free A-module with
base {dx1, . . . , dxn} where xk := x(εk) and d : A → M is given by dx : D 7→ Dx (x ∈ A, D ∈ W ).
M becomes a W -module by defining D.ϕ = D ◦ ϕ− ϕ ◦ (adD) (D ∈ W,ϕ ∈ M) (cf. [1, p. 125]).

The following lemma is easy to verify.

2.1 Lemma. x(a)Di.dxj =
{ ∑

k x(a−εk)dxk i = j,

0 i 6= j.

Let Ω denote the exterior algebra of M over A. For 1 ≤ k ≤ n, set Γk = {γ =
∑k

i=1 γiεi | 1 ≤
γ1 < γ2 < · · · < γk ≤ n} and for γ ∈ Γk set eγ = dxγ1∧ · · · ∧dxγk

∈ Ω. Also, let Γ0 = {ζ} where ζ

denotes the empty tuple, ζ = ( ), and set eζ = 1 ∈ A. Then Ω =
.∑

kΩk where Ωk :=
∑

γ∈Γk
Aeγ

if 0 ≤ k ≤ n (and, for convenience, Ωk = 0 if k < 0 or k > n). For 0 ≤ k ≤ n, Ωk has F -basis
{x(a)eγ | a ∈ A, γ ∈ Γk}.
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The action of W on M extends uniquely to an action on Ω subject to the rules

D.(v∧w) = D.v∧w + v∧D.w

D.(xv) = (Dx)v + x(D.v)

for D ∈ W , x ∈ A and v, w ∈ Ω. It is clear from 2.1 that each Ωk is a W -submodule of Ω.
Define an F -linear map δj : Ωj → Ωj+1 by setting

δj(x(a)eγ) =
n∑

k=1

x(a−εk)eγ∧dxk

if 0 ≤ j ≤ n and by setting δj = 0 if j < 0 or j > n. It is straightforward to check that δj is a
W -homomorphism and that δjδj−1 = 0.

For 0 ≤ j, k ≤ n set

Bjk = {x(a)eγ ∈ Ωj | k /∈ γ, ak 6= 0 and for i < k, ai = 0 if i /∈ γ and ai = p− 1 if i ∈ γ}

where k ∈ γ means k = γi for some i. Let Bj =
⋃

k Bjk.

2.2 Lemma. For 0 ≤ j < n, δj(Bj) is an F -basis for im δj.

Proof. Fix j with 0 ≤ j < n. It will first be shown that δj(Bj) spans im δj . Now im δj is spanned
by δj(

⋃
k Yk) where Yk = {x(a)eγ | k /∈ γ, ak 6= 0} since any standard basis element x(a)eγ of Ωj

not in Yk is in ker δj . Therefore, it is enough to prove that for each k, δj(Yk) is contained in the
F -span of δj(Bj), and this will be done by induction on k. Since Y1 = Bj1, the first step is trivial.
Now assume k > 1 and let y = x(a)eγ be an arbitrary element of Yk. If ai 6= 0 for some 1 ≤ i < k
with i /∈ γ, then y ∈ Yi and the induction hypothesis implies δj(y) is in the F -span of δj(Bj). So
assume that ai = 0 for each 1 ≤ i < k with i /∈ γ. Similarly, if ai = p − 1 for each 1 ≤ i < k with
i ∈ γ, then y ∈ Bjk so that δj(y) ∈ δj(Bj). So assume otherwise and let i be the least index for
which i ∈ γ and ai 6= p − 1. Define η = (γ1, γ2, . . . , î, . . . , γj) (“delete i”) and b = a + εi. Then
δj−1(x(b)eη) =

∑
l x

(b−εl)eη∧dxl = ±y +
∑

l>i x(b)eη∧dxl. Each term in the sum on the right is
either zero or contained in Bji. Therefore, applying δj and using the fact that δjδj−1 = 0 it follows
that δj(y) is in the F -span of δj(Bj). This completes the proof that δj(Bj) spans im δj .

Next, let 1 ≤ k ≤ l ≤ n and pick y = x(a)eγ ∈ Bjk and z = x(b)eθ ∈ Bjl. Assume x(b−εi)eθ∧dxi =
x(a−εk)eγ∧dxk for some i. It will be shown that, under this assumption, l = k and z = y. This, and
the easily verified fact that no element of δj(Bj) is zero, will imply linear independence of δj(Bj).
Since x(a−εk)eγ∧dxk 6= 0, it follows that i ≥ l. If k ∈ θ, then k < l which yields the contradiction
b− εi)k = bk = p− 1 6= ak − 1 = (a− εk)k. Therefore, k /∈ θ. Since eθ∧dxi = eγ∧dxk 6= 0 it must
be the case that i = k. It now easily follows that k = l and z = y, as desired. ¤
2.3 Corollary (cf. [8], Theorem 2.1). For −1 ≤ j < n,

(1) dimF im δj =
(
n−1

j

)
(pn − 1),

(2) dimF ker δj+1/ im δj =
(

n
j+1

)
and W acts trivially on ker δj+1/ im δj.

Proof. Part (1) follows directly from 2.2 by a counting of the elements of Bj .
For (2), first note that dimF ker δj+1/ im δj = dimF Ωj+1 − dimF Ωj+1/ ker δj+1 − dimF im δj =(

n
j+1

)
pn − (

n−1
j+1

)
(pn − 1)− (

n−1
j

)
(pn − 1) =

(
n

j+1

)
by part (1).

Therefore, all that remains to be proved is the second claim of (2). For 1 ≤ k ≤ n, set fk =
x((p−1)εk)dxk and for γ ∈ Γj+1, set fγ = fγ1∧fγ2∧ · · · ∧fγj+1 (fζ = 1). Then fγ ∈ ker δj+1.
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Moreover, {fγ + im δj | γ ∈ Γj+1} is clearly linearly independent and, since the cardinality of this
set is

(
n

j+1

)
, it must be a basis for ker δj+1/ im δj by the previous paragraph. Let x(a)Di ∈ W .

It suffices to show that (x(a)Di).fγ ∈ im δj for each γ ∈ Γj+1. If j = −1, then fγ = 1 and so
(x(a)Di).fγ = 0 ∈ im δj . Therefore, assume j > −1. Now,

(x(a)Di).fk =
{ ∑

l x
(a+(p−1)εi−εl)dxl if i = k and ai = 0,

0 otherwise.

So (x(a)Di).fγ = 0 unless i ∈ γ and ai = 0 in which case

(x(a)Di).fγ = ±
∑

l

x(b−εl)eη∧dxl = δj(±x(b)eη) ∈ im δj ,

where b = a +
∑

k(p − 1)εγk
and η = (γ1, γ2, . . . , î, . . . , γj+1) (“delete i”). This completes the

proof. ¤
Let wK := dxn +

∑2r
k=1 σ(k)xkdxk′ ∈ Ω1 and define τj : Ωj → Ωj+1 by τj(v) = wK∧v. Set

Cj = {x(a)eγ | a ∈ A, γ ∈ Γj , n /∈ γ} (0 ≤ j < n).

2.4 Lemma. For 0 ≤ j < n,

(1) Ωj−1
τj−1→ Ωj

τj→ Ωj+1 is exact,
(2) τj(Cj) is an F -basis for im τj,
(3) dimF im τj =

(
n−1

j

)
pn.

Proof. First observe that τj(Cj) is linearly independent, for if v = x(a)eγ ∈ Cj , then τj(v) is the
sum of x(a)dxn∧eγ and scalar multiples of terms of the form x(b)eρ with n /∈ ρ.

Next, since wK∧wK = 0, it follows that im τj−1 ⊆ ker τj .
Therefore,

(
n−1

j

)
pn = |Cj | ≤ dimF im τj = dimF Ωj/ ker τj ≤ dimF Ωj/ im τj−1 =

(
n
j

)
pn −(

n−1
j−1

)
pn =

(
n−1

j

)
pn, the next to the last equality from the induction hypothesis (or the fact that

im τ−1 = {0} if j = 0). Hence, both inequalities are, in fact, equalities and all three statements are
established. ¤

The element wK defined above can be used to give an alternate definition of K (see [1]).

3. Modules for K (n arbitrary).

In section 1 an F -basis was given for the underlying vector space of the contact algebra K. Now
the Witt algebra W will be used to introduce the bracket product on K. (For details, see [9].)

Define an F -linear map DK : K → W by means of DK(f) =
∑n

k=1 fkDk, where

fk = xkDn(f) + σ(k′)Dk′(f), k ≤ 2r,

fn = 2f −
2r∑

k=1

σ(k)xkfk′ .

(These formulas are taken from [9]. They differ from those in [1] by some signs which explains
why our definition of wK above is different from that given in [1].) DK is injective and its image
is closed under both the bracket product and the p-mapping of W . Therefore, identifying K with
its image under DK , K is a restricted Lie algebra and K < W . In fact, K is a simple algebra.

To avoid confusion with the trivial bracket product on A, denote the induced bracket product
on K by 〈f, g〉 (f, g ∈ K). The following list of formulas will be useful.
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3.1 Lemma ([9, p. 173]). (1) 〈x(0), x(a)〉 = 2x(a−εn).
(2) 〈x(εk), x(a)〉 = σ(k)x(a−εk′ ) + (ak + 1)x(a+εk−εn), 1 ≤ k ≤ 2r.
(3) 〈x(εn), x(a)〉 = ‖a‖x(a).
(4) 〈x(εk+εk′ ), x(a)〉 = σ(k)(ak′ − ak)x(a), 1 ≤ k ≤ 2r.

For any nonzero finite dimensional graded vector space V =
∑

i Vi define the length of V to be
M −m where M (resp., m) is the maximum (resp., minimum) of the set {i |Vi 6= 0}.
3.2 Lemma (cf. [7, Lemma 2.2]). Let V =

.∑
iVi be a nonzero graded K-module and assume that

the length of V is less than

l :=
{

(n + 1)(p− 1)− 3 p = 3,

(n + 1)(p− 1)− 2 p 6= 3.

Then K acts trivially on V .

Proof. The annihilator of V is an ideal of K which contains the nonzero component Kl. Since K
is simple, the result follows. ¤

As in [4], set

Tk =
{

xk 1 ≤ k < n,

x(0) k = n,

and for a =
∑

k akεk ∈ Zn define T a =
∏n

k=1 T ak

k ∈ u(K), where T i
k := 0 if i < 0. It is a

consequence of the p-mapping defined on K that T i
k = 0 if i ≥ p, so that T a = 0 if and only if

a /∈ A.
The K-module Z(λ) := u(K)⊗u(K+) L0(λ) is graded with ith homogeneous component Z(λ)i =∑
|a|+an=−i T a ⊗ L0(λ).

3.3 Lemma. If N is a nonzero submodule of the K-module Z(λ) (λ ∈ Λ), then N ⊇ Tω ⊗ L0(λ)
where ω =

∑n
k=1(p− 1)εk.

Proof. Let 0 6= v ∈ N . It follows from the PBW theorem that v can be written (uniquely) in the
form

v =
∑

a∈A

T a ⊗ sa

with sa ∈ L0(λ). Order A by setting a < a′ if for some k (1 ≤ k ≤ n) ai = a′i for all i > k and
ak < a′k. Let η be the least element for which sη 6= 0 and set y =

∏n
i=1 T p−1−ηi

i . Then, using
3.1, Tω ⊗ sη = yv ∈ N . Now Tω ⊗ L0(λ) is a K0-submodule of Z(λ), namely, the homogeneous
component of Z(λ) of least degree. Moreover, Tω ⊗ L0(λ) is simple so, since it intersects N
nontrivially, it must be contained in N . ¤

For each 0 ≤ j ≤ n, the K-module Ωj is graded with ith homogeneous component being the

F -span of all x(a)dγ (a ∈ A, γ ∈ Γj) for which i = |a|+ an +
{

j + 1 n ∈ γ,

j n /∈ γ.

3.4 Lemma. For each 0 ≤ j < n, im τj is a graded K-submodule of Ωj+1.

Proof. It is routine to check that for each f ∈ K, DK(f).wK = 2Dn(f)wK . Therefore, if v ∈ Ωj

and f ∈ K, then

DK(f).τj(v) = DK(f).(wK∧v)

= (DK(f).wK)∧v + wK∧(DK(f).v)

= wK∧(2Dn(f)v + DK(f).v) ∈ im τj .
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Since wK is a homogeneous element of Ω1 (of degree 2) it follows that the image under τj of a
homogeneous element is homogeneous, so that im τj is graded. ¤

It should be pointed out that τj is not a K-homomorphism, in general.

4. Simple modules for K (n = 3).

For the rest of the paper, we assume n = 3 so that K is the toral rank two contact algebra.
It will be convenient to have explicit formulas for the actions of certain elements of K on the

standard basis vectors of Ω.

4.1 Lemma. Let v = x(a)eγ ∈ Ω and set χk =
{

1 k ∈ γ,

0 k /∈ γ.

(1) x(0).v = 2x(a−ε3)eγ .
(2) x1.v = x(a−ε2)eγ if a3 = 0 and 3 /∈ γ.
(3) x2.v = −x(a−ε1)eγ if a3 = 0 and 3 /∈ γ.
(4) x(ε1+ε2).v = (a2 − a1 + χ2 − χ1)v.
(5) x3.v = (a1 + a2 + 2a3 + χ1 + χ2 + 2χ3)v.
(6) x(2ε1).v = (a1 + 1)x(a−ε2+ε1)eγ if 2 /∈ γ.

Proof. Recall that if f ∈ K, then f.v = DK(f).v, by definition. The lemma now follows from
2.1, the action of W on Ω, and the following formulas: DK(x(0)) = 2D3, DK(x1) = D2 + x1D3,
DK(x2) = −D1 + x2D3, DK(x(ε1+ε2)) = −x1D1 + x2D2, DK(x3) = x1D1 + x2D2 + 2x3D3,
DK(x(2ε1)) = x1D2. ¤
4.2 Lemma.

(1) Ω0
∼= Z(0,−4).

(2) Ω1/ im τ0
∼= Z(−1,−3).

Proof. As before, let ω =
∑

k(p− 1)εk.
(1) x(ω) is a maximal vector of weight (0,−4) (using 4.1(4,5,6)) in the one-dimensional space

(Ω0)4p−4 which is the homogeneous component of Ω0 of greatest degree. Hence there is a K+-
isomorphism L0(0,−4) → (Ω0)4p−4 (see 5.1 below) which induces a K-homomorphism ϕ : Z(0,−4)
→ Ω0. Using 4.1(1,2,3), it can be seen that ϕ sends the space Tω⊗L0(0,−4) onto Fx(0) 6= 0 so that
ϕ is injective, by 3.3. Since the dimension of each space is p3, it follows that ϕ is an isomorphism.

(2) Here, there is a K+-isomorphism L0(−1,−3) → (Ω1/ im τ0)4p−3 since this last space has
basis {x(ω)dx1 +im τ0, x

(ω)dx2 +im τ0} according to 2.4, and x(ω)dx1 +im τ0 is a maximal vector of
weight (−1,−3) (see also 5.1). This yields a K-homomorphism ϕ : Z(−1,−3) → Ω1/ im τ0. Notice
that ϕ sends Tω⊗L0(−1,−3) onto the F -span of {x(0)dx1+im τ0, x

(0)dx2+im τ0} which is nonzero
by 2.4. Hence 3.3 implies ϕ is injective. Since the dimension of each space is 2p3 (see 2.4 and 5.1),
ϕ is an isomorphism. ¤

Set Sj = im τj−1 +ker δj and Ω̄j = Ωj/Sj and let Bj be as in section 2. Let E1 = {x(a)dx3 | a1 6=
0 or a2 6= 0} and E2 = {x(a)dx2 | a = (1, 0, c) for some c} and set E = E1 ∪E2. Note that E ⊂ B1.
Define H0 = B0 and H1 = B1\E and set H̄j = {h + Sj |h ∈ Hj} (j = 0, 1).

4.3 Lemma. H̄j is an F -basis for Ω̄j (j = 0, 1).

Proof. First, note that S0 = ker δ0, so that the case j = 0 is handled by 2.2.
Using 4.1, v := τ0(x(ω)) = x(ω)dx3 (where ω =

∑
k(p − 1)εk) is a maximal vector of weight

(0,−2). Also Fv is the homogeneous component of im τ0 of greatest degree. Hence, there is a
K+-isomorphism L0(0,−2) → Fv which extends to a K-homomorphism ϕ : Z(0,−2) → im τ0.
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Since (0,−2) is not exceptional, Z(0,−2) is simple (see 1.1) so that ϕ is an isomorphism. Hence,
im τ0 is simple and of dimension p3. Also, v ∈ im τ0\ ker δ1 so im τ0 ∩ ker δ1 = {0}. This gives
dimF Ω̄1 = dimF Ω1/ ker δ1−dimF im τ0 = |B1|− p3 = |H̄1|. Therefore, it suffices to show H̄1 spans
Ω̄1 and for this it need only be shown that for each b ∈ E, b + S1 is in the F -span of H̄1 (cf. 2.2).

Let a ∈ A and consider the equation

(*) τ0(x(a)) = x(a)dx3 − (a2 + 1)x(a+ε2)dx1 + (a1 + 1)x(a+ε1)dx2.

Assume x(a)dx3 ∈ E1. If a1 = p − 1, then the equation implies that x(a)dx3 ≡ (a2 + 1)x(a+ε2)dx1

(mod S1) and since x(a+ε2)dx1 is either zero or in H1, this implies x(a)dx3 + S1 is in the F -span of
H̄1. The case a2 = p− 1 is handled similarly. Now assume a1 6= p− 1 6= a2. Then

δ0(x(a+ε1+ε2)) = x(a+ε2)dx1 + x(a+ε1)dx2 + x(a+ε1+ε2−ε3)dx3.

Since δ1δ0 = 0, it follows that

x(a+ε2)dx1 ≡ −x(a+ε1)dx2 − x(a+ε1+ε2−ε3)dx3 (mod ker δ1),

whence, from (*),

x(a)dx3 ≡ −(a1 + a2 + 2)x(a+ε1)dx2 − (a2 + 1)x(a+ε1+ε2−ε3)dx3 (mod S1).

Since either a1 6= 0 or a2 6= 0 the first term on the right is in FH1. By using reverse induction on
a1 it follows that x(a)dx3 + S1 is in the F -span of H̄1.

Now assume x(a)dx2 ∈ E2. The equations

τ0(x(a−ε1)) = x(a−ε1)dx3 − x(a−ε1+ε2)dx1 + x(a)dx2

and
δ0(x(a+ε2)) = x(a+ε2−ε1)dx1 + x(a)dx2 + x(a+ε2−ε3)dx3

along with the fact that x(a−ε1)dx3 ∈ ker δ1 show that 2x(a)dx2 ≡ −x(a+ε2−ε3)dx3 (mod S1). The
previous paragraph now shows that x(a)dx2 + S1 is in the F -span of H̄1 (recalling that p 6= 2). ¤
4.4 Lemma. Ω̄j(j = 0, 1) has no submodule isomorphic to the one-dimensional trivial module F .

Proof. (j = 0) Let v ∈ Ω̄0 be a vector on which K acts trivially. By 4.3 there are unique scalars
ca ∈ F for which v =

∑
a 6=0 ca(x(a) + S0). First note that 4.1(5) implies ca = 0 if a = (0, 0, 1).

Using 4.1(1), 0 = x(0).v =
∑

a 6=0 2ca(x(a−ε3) + S0). For a 6= 0, either ca = 0, x(a−ε3) = 0, or
x(a−ε3) +S0 is in H̄0. Moreover, the elements of H̄0 appearing are all distinct. Therefore, by linear
independence, ca = 0 if a3 6= 0. Next, 4.1(4), implies ca = 0 if a1 6= a2. So finally, using 4.1(2),
ca = 0 for all a.

(j = 1) Proceeding as above, let v ∈ Ω̄1 be a vector on which K acts trivially. Write v as a
linear combination of the basis vectors in H̄1 (see 4.3): v =

∑
(a,γ) ca,γ(x(a)eγ +S1) where ca,γ ∈ F

and the sum is over all pairs (a, γ) for which x(a)eγ ∈ H1. If x(a)eγ ∈ B1,3 (definition before 2.2)
and a3 = 1, then 4.1(5) implies x3.x

(a)eγ = 2x(a)eγ so that ca,γ = 0. Now, using 4.1(1) as in
the case j = 0 above, it follows that ca,γ = 0 if a3 6= 0. Next, by using 4.1(4), ca,γ = 0 if either
a = (p − 1, 1, 0) and γ = (1) or a = (1, 1, 0) and γ = (2). Therefore, 4.1(2) implies ca,γ = 0 if
a2 6= 0. Finally 4.1(4) implies each ca,γ is zero. ¤

Since δj is a graded K-homomorphism, ker δj is a graded K-submodule of Ωj . Hence, by 3.4, Sj

is a graded K-submodule of Ωj . Therefore, Ω̄j is a graded K-module (j = 0, 1).
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4.5 Theorem.

(1) Ω̄0
∼= L(0,−4).

(2) Ω̄1
∼= L(−1,−3).

Proof. (1) By 4.2, Ω̄0 is a homomorphic image of Z(0,−4), so it suffices to show that Ω̄0 is simple.
In fact, from the comments before 1.1, it is enough to show that Ω̄0 is simple as a graded module.
Suppose N is a simple proper graded submodule of Ω̄0. Note that, by 4.3, the homogeneous
component (Ω̄0)i is zero if either i < 1 or i > 4p − 4. Assume N4p−4 6= 0. Then N4p−4 =
(Ω̄0)4p−4 = F (x(ω) +S0) where ω =

∑
k(p−1)εk. But, by 4.2(1) and its proof, this space generates

Ω̄0 as K-module which leads to the contradiction N = Ω̄0. Therefore, N4p−4 = 0. Now N has
length at most 4p− 6 and is hence, by 1.1, isomorphic to L(λ) with λ an exceptional weight other
than (0, 0) (see 4.4). Since λ ∈ {(0,−4), (−1,−1), (−1,−3)} and x3.m = −5m for any m ∈ N4p−5

(see 4.1(5)), it follows that N4p−5 = 0. In particular, N has length at most 4p − 7 so that, by
3.2, p = 3 and N4p−6 = N6 6= 0. Since x3.m = 6m = 0 for m ∈ N6, this says N6

∼= L0(−1,−3)
as K0-modules. A contradiction is obtained by observing that (Ω0)6 (and hence N6) contains no
nonzero vector of weight (−1,−3). Hence Ω̄0 is simple, as desired.

(2) As in part (1), it is enough to prove that Ω̄1 is simple as a graded K-module. Let N be a
simple proper graded submodule of Ω̄1. Here, (Ω̄1)i = 0 if either i < 3 or i > 4p − 3 (see 4.3).
Assume N4p−3 6= 0. Then N4p−3 = (Ω̄1)4p−3 since this latter space is isomorphic to the simple
K0-module L0(−1,−3). By 4.2(2) and its proof, (Ω̄1)4p−3 generates Ω̄1 as K-module giving the
contradiction N = Ω̄1. Hence N4p−3 = 0. Therefore, N has length at most 4p − 7 which implies
p = 3 and N4p−4 = N8 6= 0. Once again, by reason of length, N ∼= L(λ) with λ an exceptional
weight other than (0, 0). In particular, λ ∈ {(0,−4), (−1,−1)} since x3.m = 8m for m ∈ N8. By
part (1), L(0,−4) ∼= Ω̄0 which has length 7. Hence λ = (−1,−1). As in the proof of part (1), a
contradiction is now obtained by observing that N8 contains no nonzero vector of weight (−1,−1).
Thus, Ω̄1 is simple and the proof is complete. ¤

5. Contragredient modules and dimensions of simple modules.

Let L be a Lie algebra and let V be an L-module. The contragredient of V is the space V ∗ :=
HomF (V, F ) on which L acts according to the rule (x.ϕ)(v) = −ϕ(x.v) (x ∈ L, ϕ ∈ V ∗, v ∈ V ). If L
is graded and V is a graded L-module, then V ∗ is also graded by setting (V ∗)i = {ϕ ∈ V ∗ |ϕ(Vj) =
0 for all j 6= −i}. In particular, (V ∗)i 6= 0 if and only if V−i 6= 0.

Recall the convention stated before that if λ ∈ Λ, then λi is viewed as an integer with−p < λi ≤ 0
by identifying Fp with Z/pZ and using the coset representative in the indicated range.

5.1 Lemma ([5, Lemma 2]). For λ ∈ Λ, dimF L0(λ) = 1− λ1.

5.2 Lemma. L0(λ)∗ ∼= L0(λ1,−λ2) as K0-modules.

Proof. By 5.1, dimF L0(λ) = 1− λ1 so it follows that L0(λ)∗ ∼= L0(λ1, c) for some c ∈ Fp. Let ϕ ∈
L0(λ)∗. For any v ∈ L0(λ), (x3.ϕ)(v) = −ϕ(x3.v) = −ϕ(λ2v) = (−λ2ϕ)(v) so that x3.ϕ = −λ2ϕ.
This says c = −λ2 which completes the proof. ¤

5.3 Theorem.

(1) If λ ∈ Λ is not exceptional, then L(λ)∗ ∼= L(λ1,−λ2 − 4).
(2) L(0, 0)∗ ∼= L(0, 0).
(3) L(0,−4)∗ ∼= L(−1,−1).
(4) L(−1,−3)∗ ∼= L(−1,−3).
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Proof. (1) Assume λ ∈ Λ is not exceptional. Then 1.1 says L(λ) ∼= Z(λ). The homogeneous
component of Z(λ) of least degree is Tω ⊗ L0(λ) where ω =

∑
k(p − 1)εk. This is a simple K0-

module and is therefore, using 5.1, isomorphic to L0(λ1, c) for some c ∈ Fp. By 3.1(3), x3 acts
on this space by the scalar λ2 + 4. Hence c = λ2 + 4. It follows from 5.2 that the homogeneous
component of Z(λ)∗ of greatest degree is K0-isomorphic to L0(λ1,−λ2−4). The result now follows
from the remarks before 1.1.

(2) Again, using the remarks before 1.1, L(0, 0) is the one-dimensional trivial module, so the
claim is obvious.

(3) Using 4.5 and 4.3 it is easy to see that the homogeneous component of L(0,−4) of least
degree is L(0,−4)1 which is K0-isomorphic to L0(−1, 1). The result now follows from 5.2 as in the
proof of part (1).

(4) Here, the homogeneous component of L(−1,−3) of least degree is L(−1,−3)3 which is K0-
isomorphic to L0(−1, 3). (This part also follows from the previous parts using the process of
elimination.) ¤

5.4 Lemma. Z(λ)∗ ∼= Z(λ1,−λ2 − 4) (λ ∈ Λ).

Proof. If λ is not exceptional, the statement follows from 5.3 and 1.1.
Assume λ = (0,−4). By 4.2(1) it is enough to prove Ω∗0 ∼= Z(0, 0). The homogeneous component

of Ω0 of least degree is (Ω0)0 which is K0-isomorphic to L0(0, 0). Hence, the homogeneous com-
ponent of Ω∗0 of greatest degree is (Ω∗0)0 ∼= ((Ω0)0)∗ ∼= L0(0, 0). Therefore, a K+-isomorphism
L0(0, 0) → (Ω∗0)0 induces a K-homomorphism ϕ : Z(0, 0) → Ω∗0 which sends Tω ⊗ L0(0, 0)
(ω =

∑
k(p − 1)εk) onto (Ω∗0)−4p+4 6= 0 (using 4.1). By 3.3, ϕ is injective. Since both spaces

have dimension p3, ϕ is an isomorphism.
Next, assume λ = (−1,−3). By 4.2(2), it is enough to prove that V ∗ ∼= Z(−1,−1) where

V := Ω1/ im τ0. The homogeneous component of V of least degree is the two-dimensional space V1

(see 2.4) which is K0-isomorphic to L0(−1, 1). This yields a K-homomorphism ϕ : Z(−1,−1) → V ∗

which sends Tω ⊗ L0(−1,−1) onto (V ∗)−4p+3 6= 0. By 3.3, ϕ is injective and, since both spaces
have dimension 2p3, ϕ is an isomorphism. ¤

5.5 Theorem.

(1) If λ ∈ Λ is not exceptional, then dimF L(λ) = p3(1− λ1).
(2) dimF L(0, 0) = 1.
(3) dimF L(0,−4) = dimF L(−1,−1) = p3 − 1.
(4) dimF L(−1,−3) = p3 − 2.

Proof. (1) Use 1.1 and 5.1.
(2) L(0, 0) is the trivial one-dimensional module.
(3) Use 4.5(1), 4.3 and 5.3(3).
(4) Use 4.5(2) and 4.3. ¤

6. Cartan invariants.

Let V be a K-module and let [V ] denote the element of the Grothendieck group of u(K) cor-
responding to V . Then [V ] can be written uniquely in the form [V ] =

∑
λ∈Λ[V : L(λ)][L(λ)] with

[V : L(λ)] ∈ Z. In fact, [V : L(λ)] is just the multiplicity of L(λ) as a composition factor of V .

6.1 Lemma.

(1) If λ ∈ Λ is not exceptional, then [Z(λ)] = [L(λ)].
(2) [Z(0,−4)] = [L(0,−4)] + [L(0, 0)].
(3) [Z(−1,−3)] = [L(−1,−3)] + 3[L(0, 0)] + [L(0,−4)].
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(4) [Z(−1,−1)] = [L(−1,−1)] + 3[L(0, 0)] + [L(−1,−3)].
(5) [Z(0, 0)] = [L(0, 0)] + [L(−1,−1)].

Proof. (1) Use 1.1.
(2) By 4.2(1), Z(0,−4) ∼= Ω0. According to 2.3(2), L(0, 0) ∼= ker δ0 < Ω0 and, by 4.5(1),

Ω0/ ker δ0 = Ω̄0
∼= L(0,−4).

(3) By 4.2(2), Z(−1,−3) ∼= Ω1/ im τ0. Now im δ0 ≤ ker δ1 ≤ Ω1. Therefore, if π : Ω1 → Ω1/ im τ0

denotes the canonical epimorphism, then π(im δ0) ≤ π(ker δ1) ≤ π(Ω1). As in the proof of 4.3,
im τ0 ∩ ker δ1 = {0}, so π(im δ0) ∼= im δ0

∼= Ω̄0
∼= L(0,−4) (by 4.5(1)), π(ker δ1)/π(im δ0) ∼=

ker δ1/ im δ0 which has three composition factors, each isomorphic to L(0, 0) (by 2.3(2)), and
π(Ω1)/π(ker δ1) ∼= Ω̄1

∼= L(−1,−3) (by 4.5(2)).
(4) Use 5.4, 5.3 and part (3).
(5) Use 5.4, 5.3 and part (2). ¤

The Lie algebra K0 has a p-grading: K0 = (K0)−1+̇(K0)0+̇(K0)1 where (K0)−1 = Fx(2ε2),
(K0)0 = Fx(ε1+ε2) + Fx3 and (K0)1 = Fx(2ε1). The component (K0)0 =: T is a maximal torus
for K. Also, (K0)1 C T + (K0)1 := K+

0 and K+
0 /(K0)1 ∼= T so that any T -module becomes a

K+
0 -module in the natural way.
For λ ∈ Λ, let Fλ denote the one-dimensional T -module on which x(ε1+ε2) (resp., x3) acts as

multiplication by λ1 (resp., λ2). Then Z0(λ) := u(K0)⊗u(K+
0 ) Fλ has unique simple quotient L0(λ).

The following lemma gives the composition factors of Z0(λ) (by way of formulas in the Grothen-
dieck group for u(K0)). It follows easily from [6, Theorem 1] and [2, Theorem 5.1].

6.2 Lemma. [Z0(λ)] =
{

[L0(λ)] + [L0(2− p− λ1, λ2)] λ1 6= 1− p,

[L0(λ)] λ1 = 1− p.

In the following discussion, all parametrizations by Λ are assumed to be relative to a fixed
ordering.

Let X be the p2 × 1-matrix with λ-entry

Xλ =
∑
µ,ν

[Z0(ν) : L0(µ)][Z(µ) : L(λ)].

6.3 Lemma. Xλ =





16 λ = (0, 0),
4 λ = (0,−4), (−1,−1) or (−1,−3),
1 λ1 = 1− p,

2 otherwise.

Proof. Assume λ1 6= 1 − p. Then 6.1 implies [Z(1 − p, c) : L(λ)] = 0 for all c ∈ Fp. Hence,
Xλ =

∑
µ6=(1−p,c) 2[Z(µ) : L(λ)] by 6.2. Using 6.1 the result follows.

Now assume λ1 = 1− p. If µ1 6= 1− p, then [Z(µ) : L(λ)] = 0. Therefore, Xλ =
∑

µ1=1−p[Z(µ) :
L(λ)] = 1, again by 6.2 and 6.1. ¤

Let C be the Cartan matrix of K. Hence, C is the p2 × p2-matrix with (λ, µ)-entry Cλµ :=
[P (λ) : L(µ)] where P (λ) is the projective cover of L(λ).

6.4 Theorem. Assume p > 3. C = pβX tX where β = p3 − 12 and tX denotes the transpose of
X.
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Proof. Note that for λ ∈ Λ, Fλ
∗ ∼= F−λ. According to [3], C = pβ tR′ tQ′UQR where

Qλµ = [Z0(λ) : L0(µ)],

Q′λµ = [Z0(−λ) : L0(µ)],

Rλµ = [Z(λ) : L(µ)],

R′λµ = [Z(λ) : L(µ)∗],
Uλµ = 1.

Evidently, R′ = RP1 and Q′ = P2Q for some permutation matrices P1 and P2. Since tP2U = U , it
follows that C = pβ tP1

tR tQUQR = pβ tP1X
tX. By 5.3, P1 is obtained from the identity matrix

by transposing the (0,−4)- and (−1,−1)-columns and transposing the (λ1, λ2)- and (λ1,−λ2 − 4)-
columns for λ not exceptional. Hence, 6.3 implies tP1X = X. ¤
6.5 Theorem. Assume p > 3. For λ ∈ Λ, dimF P (λ) = pαXλ where α = p3 − 6 and Xλ is as in
6.4.

Proof. dimF Z(µ) = p3dimF L0(µ) and dimF Z0(ν) = p, so that

∑

λ

XλdimF L(λ) =
∑

ν,µ,λ

[Z0(ν) : L0(µ)][Z(µ) : L(λ)]dimF L(λ)

= p3
∑
ν,µ

[Z0(ν) : L0(µ)]dimF L0(µ)

= p4
∑

ν

1 = p6.

Therefore, denoting by dim P (resp., dim L) the p2 × 1-matrix with λ-entry dimF P (λ) (resp.,
dimF L(λ)), 6.4 implies dim P = C dim L = pβX tX dim L = pαX. ¤
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